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Abstract

Network intrusions leverage vulnerable hosts as stepping stones to penetrate deeper

into a network and mask malicious actions from detection. This research focuses on a

novel active watermark technique using Discrete Wavelet Transformations to mark and

detect interactive network sessions. This technique is scalable, nearly invisible and

resilient to multi-flow attacks. The watermark is simulatedusing extracted timestamps

from the CAIDA 2009 dataset and replicated in a live environment.

The simulation results demonstrate that the technique accurately detects the presence

of a watermark at a 5% False Positive and False Negative rate for both the extracted

timestamps as well as the empirical tcplib distribution. The watermark extraction accuracy

is approximately 92%.

The live experiment is implemented using the Amazon ElasticCompute Cloud (EC2)

service. The client system sends marked and unmarked packets from California to

Virginia using stepping stones in Tokyo, Ireland and Oregon. Five trials are conducted in

which the system sends three simultaneous watermarked samples and one unmarked

sample 100 times to each target. The live experiment resultsare similar to the simulation

and provide statistical evidence demonstrating the effectiveness in a live environment to

identify stepping stones.
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Scalable Wavelet-based Active Network Stepping Stone Detection

1 Introduction and Motivation

1.1 Background

Presently, malicious users are a serious problem in the computing industry. Computer

and network attacks (i.e., data exfiltration and botnets) continue to grow at an alarming

rate. Intrusion detection is a diverse area of interest focused mainly on preventing these

attacks. Identifying the origin of the attacks and mapping the route is important to prevent

future attempts. A 2008 report shows that most of the attack attempts on US computers

originated in the US as shown in Figure 1.1 [17]. As stated by asecurity researcher at

Secureworks,

”We believe these statistics are significant because it clearly shows that

the United States and China have a lot of vulnerable computersthat have been

compromised and are being used as bots to launch cyber attacks.”

One important element is detecting computerstepping stones. A stepping stone is a

computer that is actively used as a hop point, normally inside the targeted network. It

communicates with external and internal computers using bi-directional network streams.

Indeed, stepping stone detection is important because the malicious actors circumvent

many of the security measures (e.g., firewalls or other network barriers). By having full

access to a single host, the malicious actions appear as legitimate traffic and is difficult to

detect.

Recent work by Houmansadr shows that watermarking inter-packet delays in packet

streams is one of the most powerful tools in detecting stepping stones [10] [8]. The

1
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Figure 1.1: 2008 origins of US cyber attack attempts by country [17]

watermark serves as a recognizable pattern that serves as a marking for the network

stepping stones. The Scalable Watermark that is Invisible and Resilient to Packet

Losses (SWIRL) system watermarks the inter-packet delays to detect the network streams.

This active technique adjusts the packet delays so that fewer packets are required for

detection and is generally more accurate than related passive techniques. The general

system model in Figure 1.2 shows the network components as well as the watermarker

and detector. Placed on the edge of the network, the watermarker modifies the packet

timing as they enter or leave the network boundary. If one of the network computers is

used as a stepping stone, a detector placed inside the network can detect the watermarked

stream from the internal network.

Previously captured streams of SSH traffic and empirical distributions included in the

tcplib library builds the model of typical stepping stone traffic. Consistent with related

2



research for stepping stone detection, passive data collected by the Cooperative

Association for Internet Data Analysis (CAIDA) project forms the main resource for

previously captured SSH streams.

Figure 1.2: System Block Diagram

It is important to note that stepping stone detection techniques must be robust against

attackers attempting to subvert detection. Attackers use chaffing as well as introduce

random jitter into the packet streams to circumvent detection. Indeed, the technique must

3



be difficult for an attacker to detect and resilient against watermark removal. The

watermark must be invisible so that it is difficult for an attacker to determine if the stream

is indeed watermarked. The proposed technique presents a novel method of the stepping

stone detection and presents the results of the simulation and live experiment.

1.2 Problem Definition and Goal

This research introduces a novel algorithm for detecting network stepping stones.

The algorithm uses a semi-blind active watermarking technique that modifies the

inter-packet delays in a way that is nearly invisible (i.e.,the presence of a watermark is not

apparent to the attacker). The goal is to demonstrate effectiveness of identifying network

stepping stones using this technique. In addition, the system must scale to facilitate

integration in larger network environments. The final goal is predictable error and

detection rates that are comparable to previous research.

1.3 Approach

The technique is developed based on the statistics of extracted traces from the

CAIDA 2009 dataset. Next, the procedure is simulated and tested to compare performance

from previous research and accepted statistical distributions. Once the algorithm is refined

and evaluated, a live system using stepping stones is implemented that tests the

performance in a real-world environment. A comparison between the simulation and the

live experiment demonstrates the performance and effectiveness of this novel technique.

1.4 Research Contributions

This research serves to introduce and evaluate a technique to detect stepping stones in

a network. If applied in a real-world environment, this system can assist network security

personnel in identifying malicious network streams, combatting botnets and preventing

data exfiltration.

4



1.5 Assumptions and Limitations

The main assumptions and limitations in this research involve three areas. The first

involves the limitation that the extracted timestamps fromthe CAIDA 2009 SSH ports do

not contain payload information and therefore are not guaranteed to be interactive

sessions. These extracted timestamps are assumed to be a valid representation of typical

interactive sessions.

The second area involves the selection of stepping stones for the experiment. A true

valid sampling requires a random selection of true network stepping stones from the

complete population. Because this is not feasible, the stepping stones selected in the

experimental phase represent hosts that exhibit similar characteristics to likely stepping

stones. It is assumed in this research that the results may beextended to a larger scale

based on the fact that the selected stepping stones are a valid sample of the available

stepping stones.

Lastly, because this research focuses on interactive stepping stones, the algorithm

performance decreases when the type of traffic is changed. The performance specifically

deteriorates during high rates of traffic as well as constant rate traffic. Although the

algorithm could be adapted to these distributions, this research focuses mainly on the

distribution associated with human driven interactive sessions. As a result, automated

sessions are not within the scope of this research, however efforts to extend this technique

may focus on applying the wavelet technique to these sessions.

1.6 Thesis Organization

This thesis presents the research in a manner typical of experimental research. First,

the background addresses previous research relating to this field. Next, the experimental

methodology and the analysis are presented. Conclusions follow the results addressing the

impacts of the research and discusses future work. The appendices include a discussion on
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the development of the client and server programs as well as alisting of rejected CAIDA

datasets.
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2 History and Background

This chapter introduces many of the techniques evaluated inprevious related

research. Stepping stone detection traces back approximately ten years ago in 1995 when

Staniford-Chen and Heberlein recognized the problem and proposed an initial solution

[20]. Since then, attackers progressed in complexity making the detection of stepping

stones more difficult. As the attackers’ techniques became more advanced to cloak their

actions, the detection methods also became more complex to adapt to these changes.

Advantages and disadvantages of previous techniques are discussed in this chapter to set

the stage for the proposed technique for stepping stone detection.

First, the importance of detecting the stepping stones is discussed followed by a brief

discussion of malicious and legitimate uses of stepping stones. Next, a classification of the

current detection techniques are presented as passive and active methods along with blind

and non-blind detection. Finally, a summary of the history and previous research is

presented.

2.1 Why Stepping Stones are Important

2.1.1 Evolution of Stepping Stones.The problem of intruders gaining access to

computer systems through the network traces back many yearsand continually presents a

difficult problem in today’s growing networks. In 1995, Staniford-Chen and Heberlein

introduced the problem of tracing an intruder back through achain of multiple machines.

These chains are often referred to as stepping stones and detecting them is commonly

known as Stepping Stone Detection (SSD) [20]. The chains provide anonymity to the

attacker so that tracing the original source of an attack is more difficult. Because an

attacker may have access to only one host due to security or network restrictions, using a

stepping stone allows the attacker to extend the reach of theattack using this one

compromised machine.
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Fifteen years later this same problem still exists and as thecomplexity of the attacker

increases, this problem is more difficult to solve. Data streams are more complex due to

the use of encryption, data padding or chaffing and timing perturbations. The encryption

schemes hides the contents of the data from both eavesdropping or sniffing. In many cases,

even the victim stepping stone cannot read the data althoughit traverses the link. Data

padding or chaffing involves the attacker inserting extra data into the useful data stream.

Chaffing is a practice in cryptography that adds packets of data that appear legitimate but

are only discernible to the receiver with the correct key. The chaffing process is commonly

used to maintain confidentiality without actually encrypting the data, but requires

significant overhead to mask the original contents of the data. Because many applications

can be identified by the inter-arrival time of the packets (e.g. most Voice over Internet

Protocol (VoIP) calls), the actual packet times may be adjusted so that they cannot be

easily classified. The attacker manipulates these timing perturbations to mask the actual

delay of the packets. These common techniques used by attackers make the classification

of the packet streams at the stepping stones more difficult to detect, though not impossible.

The importance of stepping stone research is demonstrated in government proposals.

An Air Force solicitation explicitly requests research in identifying stepping stones to

enable traceback [3]. Figure 2.1 illustrates an example scenario from the solicitation in

which the attacker uses stepping stones to conceal its actual origin and make the traceback

more difficult.

Complex bot networks (botnets) and compromised servers are some examples of

present day attacks that commonly use stepping stones. These stepping stones serve as a

relay point so that the attacker can disguise their tracks orpenetrate deeper into a network.

The botnets normally contain an overlay network for commandand control which is

disguised by the use of stepping stones.
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Figure 2.1: Example of an attacker using stepping stones to conceal original location [3]

2.1.2 Botnets.

2.1.2.1 Botnet Overview.A great deal of current security research focuses on

analyzing and categorizing botnets. While this research does not specifically serve this

purpose, a brief description of a botnet is included as it applies to the importance of the

stepping stone. The botnet is generally characterized by a bot, a botmaster, and the

command and control (C2) server. The bot is often the victim orend-user machine

running the bot software to communicate with the C2 server. Generally, the bot receives

commands issued remotely by the botmaster or botherder. Often, the commands between

the botmaster and the C2 server as well as the between the C2 server and the bot are not

relayed directly. Instead, stepping stones are often used to mask the origin of the C2

network. The most popular example of the stepping stone in botnets is the Internet Relay
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Chat (IRC) server. In this scenario, the IRC server relays commands between the C2 host

and the bots.

While the botnet software is not always malicious, the majority of security research

involves preventing unknown malicious bots. Several characteristics make detecting these

unknown bots difficult. First, the communication in the botnet may lie dormantfor long

periods of time awaiting commands. Also, botnets may be divided into smaller sections

controlled by networks of C2 servers. The C2 server may direct at any time the bots to

migrate between servers and divert traffic to different machines. Lastly, some machines

may serve multiple botnets, creating a situation in which the amount of infected hosts

appears to exceed the number of physical infected hosts. Likewise, if the C2 server only

directs certain nodes to respond, the corollary may exist where the amount of infected

hosts is vastly underestimated [11].

In some cases, the commands sent to the bot may not be able to traverse the

endpoints in the original network configuration. In this case, stepping stones are used to

gain access to a network and broaden the depth of the botnet. Strayer identifies these

intermediate hosts asrendezvous-pointsand states that they may be hierarchical to support

scalability in the botnet [23]. Flow analysis assists in identifying botnet traffic not

originally observed. While the flow correlation does not necessarily mean a botnet is

present, it does offer a more focused effort on likely targets.

2.1.3 Compromised Hosts and Stepping Stones.Besides command and control for

botnets, attackers may simply use a compromised host as a stepping stone to obfuscate the

origin or penetrate deeper into an internal network. As attacker techniques become more

advanced, the scenarios typically include more steps. The standard Intrusion Detection

Systems (IDSs) have difficulty identifying these multi-faceted attacks. Indeed, IDS

enhancements include a new modeling language introduced tocombat the complex

scenarios [1].

10



Larger organizations in particular are common targets for stepping stone attacks.

While the majority of networks are behind security devices (e.g., firewalls or

Demilitarized Zones (DMZs)), even the compromise of one system can be used as a

stepping stone to reach the rest of the computers on the network. A report on network

security lists these stepping stone threats as one of the most probable avenues of attack for

external facing devices [18]. These threats for embedded devices may be greater due to

the difficulty in securing such devices. In fact, one resource indicates the possibility of

using an embedded web server inside a picture frame as a stepping stone to access the

entire company intranet [6].

2.1.4 Legitimate Stepping Stones.Not all traffic characterized as stepping stone

traffic is malicious (e.g., VoIP traffic or automated polling systems). Even using

decentralized peer-to-peer methodology to send this traffic may appear as stepping stones.

Other uses for stepping stones are cases in which administrators only allow access to

certain computers through gateways. In many cases the gateway performs like a legitimate

stepping stone or hop point. Policy based decisions must also be employed in the SSD to

ensure that legitimate stepping stone traffic is filtered from possible malicious traffic.

However, the policy based decision must be made carefully because the malicious traffic

may indeed closely resemble the legitimate traffic.

Previous research shows that VoIP traffic can be detected using stepping stone

detectors even when using anonymizing services. The detector accurately detects VoIP

traffic streams and identifies the endpoints by manipulating the delay between packets

[26]. This research carefully modifies the delay so that the endpoints could be detected

while not adversely affecting the voice quality. The research demonstrates that stepping

stone detection can be extended to identify endpoints of authorized traffic. Although the

VoIP traffic was authorized on the network, they were able to determine the endpoints of

the conversation.
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2.1.5 Interactive Session Models.Much of the stepping stone research

concentrates on identifying and modeling interactive sessions based on human

interactions. Initial research modeled the inter-arrivalbetween packets as a Poisson

distribution. While this distribution was the basis for manyyears, other distributions (e.g.,

the empiricaltcplib distribution and the Pareto distribution) have proven moreaccurate in

modeling human-driven sessions [16].

In addition to the inter-packet delays, the stepping stone research must consider other

variables in the network such as jitter. A study on wide-scale WAN networks using the

PlanetLab overlay network concludes that the maximum jitter is approximately normally

distributed with a zero mean and a maximum standard deviation of 5 ms [14]. Additional

research observes the standard deviation of the jitter between 6.2 to 12 ms [8].

2.2 Initial Detection and Classification

The initial paper by Staniford-Chen introduced the concept of using a series of

computers to relay traffic [20]. By successfully logging on to each computer using a

UNIX terminal, this theory established a connection to the endpoint via intermediate

computers as stepping stones. The importance was illustrated by the increasing number of

intrusion attempts, as far back as 1995. Research by Staniford-Chen relies on thumb

printing the connections to identify the packet streams. The thumb print simply compares

the data payload on either side of the host to correlate the network flows. This is easily

circumvented using encryption or other data disguising technique. The concept was

extended by Zhang and Paxson where they first named the network stepping stone. This

work also set the stage for more robust detection methodologies including active

detections [32].

The SSDs are categorized according to technique and location. The techniques are

passive and active methods and the location of the SSD is host-based or network-based.

Table 2.1 shows various SSD techniques [28]. Similar to other host-based models, these
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detection methods require sensors or adjustments made at each individual host, whereas

network-based detection models take place at different points along the network path. The

passive detection methods do not modify or alter the packet,whereas the active-based

detection works primarily by altering the packet timing or payload.

Table 2.1: Classification of Existing Stepping Stone Detection Techniques

Passive Active

Host-based DIDS, CIS Caller ID

Network-based

Thumb printing IDIP

Timing-Based CITRA

Deviation-Based SWT

Online Sketching RAINBOW

SWIRL

2.3 Passive Detection

In the passive SSDs, the network traffic is classified without modification. The

obvious advantage is that the attacker can not determine if the detection is taking place.

Acting much like a sniffer it performs operations in a covert manner because the network

traffic is not modified. The passive detection can be further subdivided into host-based and

network-based passive detection.

2.3.1 Host-based Passive Detection.The two main examples of host-based

passive detection are the Distributed Intrusion DetectionSystem (DIDS) and the Caller

Identification System (CIS). DIDS is an early system developed by the University of

California at Davis to trace events as they progressed through the network [19]. It uses

event monitors and triggers to correlate network activity to the user involved. As an
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example, if a user “smith” logs on to another machine using a guest account, the

host-based event generator triggers the Local Area Network(LAN) monitor about the new

connection. From there, if the user “smith” executes a network scan using the guest

account, the monitor could trace the logon attempt back to the user “smith” on the original

machine. A server maintains the full login chain to trace back communications to the

original user.

The CIS also uses the host-based detection approach but in a distributed manner [12].

Instead of a centralized server managing all of the connection states, when a host on

machinen attempts to connect to another host, it presents the currentlogin chain ofn

hosts for verification. The host at (n+ 1) then verifies the presented chain from computer

1 ton. The new connection is only authorized to login when the chain is fully verified.

The new host is then added to the login chain for future connections. This process

introduces additional overhead to the login process but does not require the central server

to manage the state of the connections.

2.3.2 Network-based Passive Detection.Although the network-based passive

detection shows promise in many areas, it does not show significant improvement over

using standard passive intrusion detection methods. Many of the techniques and

procedures are similar in that most use some form of statistical processing to match

existing data (e.g., Bayesian detection or correlation). The network-based passive

detection methods include thumb printing, timing-based and deviation-based. One of the

main drawbacks of the network-based approach is that it musttrust the sensors to provide

correct data. Most of the schemes presented for both active and passive network-based

detection rely on the fact that the sensor is not compromisedwhen verifying the integrity

of the data.

The thumb printing detection method first described by [7] and extended in [20]

describes a method in which the packet is assigned to a “thumbprint” at a central server

14



based on the packet payload. This thumb print is analyzed andcorrelated with other

thumb prints to determine which connections are incoming and outgoing on a host. If the

thumb print matches both connections, then that host can be identified as a stepping stone

for that data stream. This relies on simple communication between hosts and is easily

defeated using encryption or chaff packets.

The timing-based detection methods enhances SSD and demonstrates effectiveness at

detecting stepping stones, even if traffic is encrypted. The packet inter-arrival times are

analyzed using network devices and correlated to determinewhich packets matched both

incoming and outgoing streams [32]. Similar to the thumb printing, the timing-based

detection methods are based on correlation, but do not rely on the similarity of the

incoming and outgoing data to create a match.

Work by Donoho and Paxson identifies three key characteristics in detecting stepping

stones [5]. First, they show that random swaps of inter-packet delays within a given time

window provide a statistically provable method of correlating input and output streams.

Their technique selects a given time window and randomly interchanges the inter-packet

delays, retaining the underlying distribution. They also demonstrate that this technique is

non-causal. Second, this seminal work demonstrates applying the Discrete Wavelet

Transform (DWT) on vectors of inter-packet delays. The system correlates the network

streams using the DWT coefficients to identify the stepping stones. This research

analytically demonstrates the effectiveness using the Poisson distribution to model the

inter-arrival times. As previously mentioned, the distributions for interactive sessions are

not well modeled by the Poisson distribution; however, theyclaim the results should be

similar using the Pareto ortcplib distributions. The simulation using the empiricaltcplib

distribution shows promising results using the DWT correlation of coefficients. Lastly,

they show that these techniques may be resilient to and possibly even detect the presence

of chaff packets.
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Deviation based SSD operate similarly by analyzing the minimum average delay gap

between the packet streams of two Transmission Control Protocol (TCP) connections. The

deviation uses both the packet timing as well as the TCP sequence number. Note that the

TCP payload is not considered in the calculation. One obviousdrawback of the

deviation-based SSD is that it is only valid for TCP connections. Other reasons for the

deviation-based approach failures were caused by Unix broadcast traffic that replicated

stepping stones as well as connections with very large latencies. In the case of the Unix

broadcast applications, the correlated traffic matches two flows from one distinct source

(e.g., fromh1→ h2 andh1→ h3). This could be easily sorted out since it does not

conform to a stepping stone which would beh1→ h2→ h3. In the latter case, if a user

logged on to a system from a foreign country and then returneda connection back to the

country, the algorithm had difficulty detecting the stepping stone due to the large latency

[30].

One of the latest approaches involves a technique called Online Sketching as

described in [2]. Online sketching uses an algorithm to examine flows at the network

boundary to identify stepping stone traffic. Based on data sketches, which are widely used

in stream analysis, the algorithm maintains short sketchesof data streams to identify the

stepping stones at the network boundaries. Through experimental verification of 100 SSH

flows, online sketching identifies 95% of the stepping stone data streams even with

additional perturbations, chaff packets and background traffic in the data set. One main

advantage of this technique was that in traditional passivecorrelation analysis,O(n×m)

calculations are required wheren andmare the ingress and egress data flows, respectively.

This process of online sketching only requiresO(n+
√

n×m) calculations. The main

disadvantages of this approach is that to be effective against a certain flow, the parameters

must be selected very carefully. Because of this, it was not robust against flows that

deviated from this original characteristic. In other words, if the parameters were chosen to
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identify a flow with approximately 2.5 packets per second, a new flow that was 10 packets

per second may not be detected with the same accuracy.

2.4 Active Detection

The active detection methods for SSD require more sophistication but offer better

results in general when compared to the passive methods. Because they are able to

manipulate the packets or data streams, they require codes and programs to create the

desired effect. This also means that they may introduce undesirable effects (e.g., as added

packet delay or bottlenecks) depending on the network performance. While the

computational complexity may be reduced in the active detection, the scalability may be

affected due to the network resources.

2.4.1 Host-based Active Detection.Caller ID (not to be confused with CIS) is an

active detection method that was proposed by Staniford-Chenand reportedly used by the

Air Force [20]. It proposes that in order for an attacker to use a chain of stepping stones,

each link in the chain must contain a vulnerability. Similarto a “hack-back” approach, the

Caller ID system would attempt to gain access to each host in the chain to identify the

path. Obvious legal and technical restrictions make this approach somewhat unfeasible,

especially to identify an attacker in real-time. While an attacker can take months to

establish a series of stepping stones, the Caller ID approachmay not work in a timely

manner, if at all.

2.4.2 Network-based Active Detection.As the primary thrust of this research, it is

important to analyze the advantages and drawbacks of past network-based active detection

techniques. Early thumb printing attempts led the way to more advanced timing-based as

well as deviation-based detectors able to identify stepping stones, even when obfuscated

by encryption and chaffing. The active detection led the way to activewatermarksin order
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to reduce the computational complexity of the algorithms and improve detection rates.

The fundamental block diagram for network-based watermarking is shown in Figure 1.2.

2.4.2.1 Active detection based on packet payload.The Cooperative Intrusion

Traceback and Response Architecture (CITRA), based on the original Intrusion

Identification and Isolation Protocol (IDIP) system, provides an infrastructure that enables

IDSs, firewalls, and other network components to cooperatively trace and block network

intrusions. The original IDIP design is a protocol for reporting intrusion-related events and

coordinating the attack traceback. Additionally, it allows for an automated response action

and reduces the network manager’s workload in the event of anattack. The CITRA system

extends this to multiple functional neighborhoods that communicate with each other to

correlate findings. Much of the analysis focuses on the defense against a Distributed

Denial of Service (DDoS) attack, as the IDSs constantly exchange information in order to

locate the attacker [21]. Although this approach does not modify the packets on the

network level, it is classified as an active approach becauseof the information exchanged

between the IDSs. Wang also questions the ability of the intermediate boundary controller

to identify an intrusion solely based on a hard-coded attackdescription [28].

The Sleepy Watermark Tracing (SWT) approach is another active network-based

detection and tracing framework [29]. It is referred to assleepybecause it only is

triggered in the event of a detected intrusion. Once an intrusion is detected, it activates the

SWT to embed the watermark in the packets. The watermark is a “virtual null string” that

is injected into the packet that appears null to the end user of the application. In the case

of the telnet and rlogin applications, a virtual null stringmay consist of a series of “\b”

characters. Guardian boundary devices correlate the SWT to incoming and outgoing

packet streams. An important feature of this research is theresponse of actual hardware to

the SWT. They showed that the SWT gateway latency overhead is only approximately 50

µs. Although the SWT technique shows promising results, it is ineffective if the stepping
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stone uses link-to-link encryption. It also requires that each host needs a single, trusted

guardian gateway to correlate the packet streams.

2.4.2.2 Active detection using timing information.Modifying packet timings

is an active method in which the watermark information is embedded in the packet timings

instead of the actual packet data. These techniques can be further classified as blind or

non-blind depending on the amount of information passed between the watermarker and

the detector. In a blind system, the detector only has accessto a secret key shared between

it and the watermarker. In a non-blind system, additional information about the packet

stream is passed to the detector, typically through an out-of-band channel. Table 2.2

shows the classification of the current watermarking techniques as blind or non-blind.

Table 2.2: Classification of Active Watermark Stepping StoneDetection Techniques

Blind Non-Blind

SWT RAINBOW

ICBW C-RAINBOW

SWIRL

Loosely based on the active SWT, Wang proposes actively modifying the packet

delays for the Interval Centroid Based Watermark (ICBW) technique in order to correlate

the streams of traffic. Instead of embedding the marking in the stream data, this

framework adjusts the delay of the packets to encode the correlated values in the delays.

This technique has better detection rates and less False-Positives (FPs) than the passive

counterpart; however, the technique does not adequately scale [27]. Later research shows

ICBW successfully traced active VoIP conversations through anonymizing networks [25].

Additionally, researchers later demonstrate, however, that adjusting the inter-packet delay

could be subverted using multi-flow attacks.
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Another similar approach is to manipulate the arrival timesof the packets using

preselected time intervals. This Direct Sequence Spread Spectrum (DSSS) technique is

proposed to alleviate the problem of repacketization [29].In the case of SSH and other

applications, this is a natural effect and poses a challenge to the detection of stepping

stones. Each flow is sliced into short fixed-length time intervals. The watermark is

embedded in these slices by manipulating the packet count during the specific intervals.

The research shows that using synthetically-generated SSHtraffic flows with the empirical

tcplib distribution, it achieves 100% detection rates with under 1& FP rate.

Similar to the previously mentioned techniques, a proposalof a DSSS watermarking

process shows promising results by encoding a binary watermark ofn bits in an interval of

lengthTs. Therefore, the packet length needs to be at leastnTs long in order to encode the

entire watermark. Both the watermarker and the detector mustagree on the parameters for

the lengthTs as well as the Pseudo Noise (PN) code. Then bits are based on a PN code

similar to the DSSS codes used in radio signal transmissions. This allows the detector to

recover the watermark by applying a high-pass filter to the received signal and

subsequently passing it through a de-spreading and low-pass filter [31].

Although the packet inter-arrival modification techniquesonly share the key to the

detector, they are all vulnerable to multi-flow attacks as described in [13]. In this attack on

the watermarking scheme, it is assumed that the attacker gained control of the stepping

stone and can monitor the incoming and outgoing flows. If multiple external flows are

generated to this host, then the attacker can collect the timing and recover the secret

watermark key. Indeed, such actions allow an attacker to both detect and remove the

watermark for ICBW and Interval Based Watermark (IBW) techniques.

The Robust and Invisible Non-Blind Watermark (RAINBOW) detection system

Houmansadr proposes extends aspects of the SSD to be robust against packet losses [10].

It begins by storing the timing information for a specific flowin a database where

20



tui |i = 1, . . . ,n+ 1, and the superscriptu refers to the unmarked flow entering the

watermarker. Next, it delays the packet by a valuewi with values of±a with equal

probability:

wi =































+a w.p. 1
2

−a w.p. 1
2

(2.1)

The valuea represents the amount of watermarking and is chosen small enough that it is

invisible to ordinary users and attackers. In order to detect the watermark in this non-blind

system, the detector has the timingsti as well as the watermark componentswi. The

detector then determines if a watermark is present based on anormalized correlation

scheme. In typical connections such as SSH and any TCP connection, all packets do not

have a corresponding egress packet due to repacketization or other reasons (i.e., initial

SYN packets, RST packets and FIN packets). The RAINBOW system incorporates

selective correlation to account for packet loss. This selective correlation adds an

additional matching step in order to find and remove packets that do not have a

corresponding match in the other flow using sliding windows.Although the RAINBOW

technique produces promising results, it lacks efficiency and is not scalable.

The original RAINBOW technique is further extended into the C-RAINBOW by

adding additional error correcting into the watermark [9].Instead of using thenA bits for

the watermark, the C-RAINBOW uses Repeat-Accumulate (RA) codes to repeat thenA

bits q times. This repetition provides error correction to account for noisy networks and

better detector performance. This model also passes the information through a soft-limiter

block in order to remove excess noise from the system. The C-RAINBOW is modeled

using MATLAB over 10000 samples and compared to the RAINBOW results. The

simulation demonstrates that the detection rate increasesusing the samenA while the

number of FPs decrease. The C-RAINBOW also detects smaller values of the watermark

amplitude,a, which is the “jitter” created by the watermarker.
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The SWIRL is an extension of the RAINBOW technique and is the first blind

active-based network detection scheme that claims to be robust against packet losses,

multi-flow attacks and is scalable [8]. The system selects packet intervals of lengthT and

divides them intor subintervals. SWIRL then further subdivides each subinterval into m

slots as noted in Figure 2.2. The permutationπr−1 modifies the number of packets in each

slot according to the secret watermark key. A base interval is also selected so that the

detector can identify the information. The selection of theparameters must be carefully

considered depending on the traffic characteristics. The crossover point between the FP

andFalse-Negative (FN) rates is calculated and sets the ideal point for choosing the

parameters for SWIRL. The SWIRL is modeled using MATLAB and previously captured

traffic. In addition, live experiments over the PlanetLab infrastructure test the

performance. Extracted packet timings from the CAIDA 2009 January dataset are the

basis for the SSH timings. The True-Positive (TP) and FP detection rates closely match

the theoretical values and demonstrate that the technique may be viable in a large scale

network.

Slot #      0      1       2       3      0       1      2       3  

Interval (T)

Subinterval (T/r)

Slot (T/mr)

Figure 2.2: SWIRL Slot Numbering (m= 4, r = 2) [8]
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2.5 Other Detection Methods

2.5.1 Hybrid Detection. In other works, hybrid detections propose combining

active and passive techniques to form a more elaborate system for the SSD [15]. One of

the hybrid approaches involve a system that integrates the host-based and network-based

detection in an intelligent system. The research proposes that the idea was possible,

although no metrics or proofs are derived. It is mainly a theoretical design which in theory

could reduce the number of FPs and increases overall accuracy of the SSD. The main

claim is that the trust problem in the host-based system could be alleviated using the data

from the network-based system creating a more robust detection system. No efforts are

shown to prove how effective the hybrid model would be at improving the trust in the

host-based system.

2.5.2 Data Mining. Closely related to the passive correlation methods, there also

is research involving data mining of packet streams [23]. Using the standard data mining

techniques on a known benign botnet, one report shows that the first stage of filtering can

reduce the amount of non-important data streams by a factor of 37. Beginning with

8,933,303 TCP flows, filters remove obvious packets such as large file transfers and

reduce the amount of flows requiring correlation to 238,252.This is accomplished without

using port classifications so that traffic masquerading on unexpected ports would still be

detected. In the next classifier stage, the remaining flows are passed through three

machine learning systems. Between the J48 decision tree, Naive Bayes and Bayesian

Networks, the naive Bayes classifier performed best in terms of the FN rate and FP rate.

The average bytes per packet also have the highest discriminatory power in detecting the

botnet traffic. These two stages reduce the correlated traffic to approximately 48,000

packets from the original 8,933,303.

In the next stage, the correlation algorithm attempts to identify flows as a part of a

stepping stone from the remaining packets. Instead of calculating the correlation value

23



based on a computationally expensive algorithm ofO(n2) wheren is the number of active

flows, they use a new technique. While the correlation could not identify all of the known

botnet traffic, the outliers are attributed to implementing the softwareinside a virtual

machine. The research concludes that the virtual machine and the reduced calculations

offered by the new algorithm affects the timing preventing the necessary correlation. In

the last automated stage, a topological analysis determinewhich of the remaining flows

had common endpoints. Lastly, a manual analysis of the flows must be performed to

reveal the presence of the stepping stone.

Further research described in [22] expands the improved correlation algorithm

expressing the following characteristics as a time series:

• Packet event times

• Packet inter-arrival times

• Inter-burst times

• Bytes per packet

• Cumulative bytes per packet

• Bytes per burst

• Periodic throughput samples

The new algorithm examines the characteristics vector of each flow as a point inn-space.

Using Euclidean distance of the points and the Estimated Weighted Moving

Average (EWMA) (α = 0.75) to calculate the moments as a running estimate, the results

are then correlated. Plotting the Probability Density Function (PDF) of the distances,

multiple spikes are seen corresponding to highly correlated flow pairs. In this example,

they correctly hypothesized that the C2 flows were the pairs with distances closest to 0.
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The topological analysis show all but one of the expected flows in a graphical format. The

only flow not detected is an off-site host because the flow does not closely correlate to the

flows of the local bots. This demonstrates that the scheme is effective at detecting local

bots, but it cannot correlate the traffic to off-site hosts even if the C2 server was local.

2.6 Error Correction and Coding

The watermarks must be present even when there is noise and distortions of the

original data. Therefore, coding theory for error detection and correction offer an

opportunity to increase the detection rate while maintaining the same encoding and

decoding algorithms. As some of the SSD techniques use errorcorrection and coding

schemes, these applications directly apply to the future work done in this area. The RA

code is an example that is fairly low complexity and easy to derive. Demonstrated in

1998, RA is a simple and low complexity code that provides goodperformance using

Maximum-Likelihood (ML) decoding [4]. Although the complexity of the ML decoding

is prohibitively large, it is also shown that the “turbo-like” decoding which approximates

the ML decoding also performs well. In the case of the RA code, an information block of

sizenA is first repeatedq times. Theq× nA data is then scrambled by a permutation

function and encoded by a rate 1 accumulator. The RA code rate is 1/q with a linear

encoding time, making the technique fast.

2.7 Evading Detection

Before describing the various attempts to identify steppingstones, a discussion on the

various techniques attackers employ to evade stepping stones is necessary. The different

evasion techniques are important to understand as they significantly impact the

development of the algorithms to identify the stepping stones. The properties of evasion

are also critical to understand the effectiveness of the SSD techniques. Some of the more

obvious techniques are encrypting the data as well as spoofing packets. While fairly trivial
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to implement, these do not offer much resilience against detection. More advanced

techniques include timing perturbation as well as packet chaffing. In timing perturbation,

the individual packet timing is adjusted so that the correlation between the incoming and

outgoing stream is more difficult. Depending on the level of perturbation, this correlation

is still possible using current SSDs. Packet chaffing is simple in design as shown in Figure

2.3(a), but not trivial to implement [5]. The changes present an evolution in the stepping

stone from being a simple pass thru device to a more active filter. Indeed, the method of

evading detection presents new challenges to the SSD problem.

Stepping StoneAttacker

Alice is Good

Alice is Bad

Alice is OK

Alice is Good

Alice is Bad

Alice is OK

Alice is Good

(a) Packet Chaffing

Stepping Stone

Analyze and Compare

Flow 1, 2 and 3

Attacker

Flow 1

Flow 2

Flo
w 3

Flow 1

Flow 2

Flow 3
Attacker

Attacker

(b) Multi-Flow Attack

Figure 2.3: Examples of Evading Detection

In addition to evading detection, the attacker may implement active techniques to

deceive the detector. Assuming the attacker controls the stepping stone, there exists a
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possibility of modifying the network packets via a multi-flow attack as shown in Figure

2.3(b). For example, if the attacker controld the stepping stone and establishes multiple

flows of traffic into the host, then analysis of these flows could be performed. If any

deviation is exhibited from the original traffic patterns, then the attacker may assume the

presence of a watermark and can lead to the identification andremoval of the watermark.

2.8 Summary

The importance of detecting stepping stones, whether the attackers use botnets or

simple SSH commands, is very difficult. However, detecting stepping stones in real time

is invaluable to a network defender responsible for protecting a computer network. While

the passive based approaches show promise with less mature attackers, the increased

complexity of the attacker coupled with the computational resources needed make these

methods inferior. Indeed, active based watermarking techniques have proven effective

given the ever increasing network and attacker complexity.In the following chapters we

present a novel active technique effective at identifying interactive sessions used in

stepping stones.
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3 Methodology

The methodology in this research consists of three main steps. First, timestamps are

extracted and analyzed from previously recorded network conversations from the CAIDA

2009 [24] dataset. Next, after the watermarking technique is developed and refined, it is

simulated using the previously captured CAIDA 2009 timestamps. Finally, the timestamps

are used again to generate live watermarked traffic using stepping stones in the Amazon

EC2 environment.

3.1 Problem Definition

3.1.1 Goals and Hypothesis.The main goal of this research is to effectively detect

network stepping stones by applying a novel semi-blind active watermarking technique. A

subset of the goal is to better characterize typical stepping stone network traffic. The

system should be scalable with acceptable rates of detection. It also should not

significantly change the characteristics of the original waveform.

Characterizing a “better” detection technique involves many factors including the FP

and FN rates and the rate of detection relative to the number of network packets needed.

The hypothesis is that by characterizing the selected Secure Shell (SSH) traces, a novel

technique of watermarking the timestamps can be identified that demonstrates an

acceptable level of accuracy and speed (e.g., number of packets or interval detection

length) while retaining resistance against known attacks.Generally, the number of packets

and time required to detect the watermark affect the accuracy. If the number of packets

required for the higher detection rate is excessive, the technique may not be as effective.

For example, if the system identifies 10% more stepping stones but it requires ten times

the number of packets, it may not be suitable because many network conversations are

short-lived.
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3.1.2 Approach. To improve stepping stone detection, this system illustrates a

novel technique to watermark network packets. The main components of this research

comprise characterization of the traffic, algorithm development, and system testing.

Using a selected set of typical stepping stone traffic from the historical SSH traces

extracted from the CAIDA 2009 dataset [24], opportunities toexploit previously unknown

aspects of the stepping stone traffic are used to improve the detection algorithm. The

random samples of historical data are used for traffic generation during the experiments.

The simulation model estimates the algorithm performance in a controlled, theoretical

experiment.

Once the model is analyzed and the algorithm is adjusted, a live experiment further

verifies the performance. Often times, analytical models innetworks have different

variances when compared to live network traffic. For that reason, live performance

analysis is critical to establish validity and demonstratethat the recommendations improve

detection.

3.1.2.1 Analysis. The full CAIDA 2009 dataset includes over 2.4

Tebibyte (TiB) of network data without any payload information. Initially, tcpdump filters

port 22 traffic relevant to SSH or Secure Copy (SCP) containing data. Data packets are the

primary targets to modify using the active watermarking. The timing of management

commands (i.e., TCP setup, acknowledgement and reset packets) is not conducive to

modification because of required buffering which prevents atomic processes from

completing. The simple tcpdump filters reduce the amount of information to be processed

to approximately 5 gibibyte (GiB). Writing a program to parse the files and extract the

timestamps requires multiple steps. Note that more specificdetails are provided in

Appendix A. First, the program identifies the tuple of each packet containing the source

Internet Protocol (IP), source port, destination IP and destination port. It then maintains a

database of tuples identifying each individual network stream. Next, as the database of

29



tuples fills to approximately 90%, it periodically filters out all streams containing fewer

than a specified amount of timestamps. This removes the streams when a connection is

attempted, but not actually made. In this research, the maximum amount specified for

removing network conversations is fourteen packets in length. This prevents stale

conversations from filling the database too quickly while retaining the longer lived

conversations ideal for testing the watermark technique. The program maintains a

database of approximately 50,000 entries and purges stale values when the capacity

reaches approximately 90% capacity. The program records the timestamp of each packet

when the destination port is 22, indicating SSH or SCP traffic. The final filter removes all

traces containing an average packet size greater than one kibibyte (KiB). Typical packet

sizes of SCP traffic average larger sizes, so the filter removes traffic that indicates SCP

rather than SSH. The final file size for the extracted timestamps for the CAIDA 2009

dataset is approximately 140 mebibyte (MiB).

3.1.2.2 Comparison to Previous Data.Sixty traces from the Houmansadr

data [8] (also extracted from the CAIDA 2009 January dataset)are compared to the data

after parsing the files. Though the actual tuple that corresponds with the previous research

is not provided, Houmansadr indicates that the traces are truncated so that they are all

approximately 120 seconds in length. Both the extracted and the Houmansadr traces

reveal that the typical SSH traffic inter-packet delays are generally bimodal and contains

peaks at approximately 0.05 and 0.2 seconds. The plots generated previously show some

indications of the bimodal inter-packet delays, but they also show that there are many plots

in which there is a high rate of traffic without much deviation. Although Houmansadr

references that he is able to extract over 300 useful SSH traces from the January CAIDA

2009 dataset, the filters described in Section 3.1.2.1 reveal only 99 useful traces for this

experiment. Figure 3.1 illustrates the comparison of the inter-packet delays of the

extracted data and a similar dataset provided by Houmansadr. Figure 3.2 shows the density
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plot of the inter-packet delays of the same samples. Note that Appendix B illustrates the

unused traces that exhibit characteristics not consistentwith human-generated traffic.

These rejected traces show constant packet rates as well as extremely high rates of speed.
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Figure 3.1: Example Plots of Extracted Timestamps and Houmansadr Data

3.1.2.3 Inter-packet Delay of SSH Streams.The density plots of the

inter-packet delays reveal that most of the traces appear tobe bimodal. The bimodal

distribution is not consistent with previous research thatindicates the inter-packet delay is

distributed according to a Poisson distribution; however,the distribution is consistent with

recent research regarding the inter-packet delays. The bimodal characteristics of the

differential time values are shown in Figure 3.3. A bimodal distribution does not lead to an

obvious method to watermark as it is difficult to retain the underlying statistics, making

the watermark invisible. Analyzing the differences between the inter-packet delays shows

that it follows closely to a normal distribution. The analysis of the difference between the

packet delays closely resembles a second derivative and progresses smoothly to an
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Figure 3.2: Example Density Plots of Inter-packet Delays for Extracted Data and
Houmansadr Data

analysis using DWT techniques. It is important to note that this analysis is different from a

lag -2 plot, which shows the difference between every other packet. Instead, this analysis

illustrates the differential analysis of the timestamp differentials.

3.1.2.4 Discrete Wavelet Transform.As indicated in the background,

previous multimedia watermarking techniques use the DWT. The fundamental waveform

for the DWT is the Haar transform and is applied to the SSH time differentials. The values

indicate that the first three vectors are approximately normally distributed around zero for

all of the SSH traces. This leads the algorithm development to use first detail vectord1 of

the DWT to encode the watermark values using the sign of the vector. Pilot experiments

result in the final algorithm shown in Figure 3.4 and the detector in Figure 3.5. Note that

the synchronization frame and parity check are features that correct problems later

observed after adding simulated jitter.
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Figure 3.3: Distribution of Differential Time Intervals for SSH Streams. Three values
chosen from the 2009 January CAIDA dataset to show bimodal characteristics.

3.2 System Boundaries

The System Under Test (SUT) consists of many components. TheSSD includes the

watermarker and the detector as well as the network equipment and hosts. The dotted

lines in Figure 3.6 reflect the logical boundary of the system. While the components may

be physically or geographically separated, the mechanism performing the active

watermarking and the component responsible for detecting the watermarks define the

logical boundaries.

In the simplest design, the SUT is self-contained in the protected network. In more

complex designs and with appropriate permissions, the watermarker and detector do not
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Figure 3.4: Algorithm of the Watermarker

need to be on the same physical or logical network. With the proper parameter selection,

the detection mechanism is robust against variances causedby the network.

The main Component Under Test (CUT) is the watermark detectionalgorithm. While

both the watermarker and the detector perform two different operations, the actual CUT is

the detection algorithm. This research builds on previous designs and tests conducted to

achieve a high level of detection with the fewest number of packets or time. Immediate

and accurate identification of the stepping stones are the most important characteristics of

a system that is operationally useful to network defense. This research introduces a novel

watermarking technique and evaluates the effectiveness.
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3.3 System Services

The SSD provides active network watermark detection in the presence of robust

countermeasures without significantly affecting the network characteristics. The success

of the system primarily resides in accurate stepping stone detection. Given a null

hypothesis that there is no watermark present at the detector, the outcomes of the detector

fall into one of four categories:

35



Figure 3.6: The System Under Test and Component Under Test

• True Positive (TP): The detector correctly identifies a watermarked stream as

watermarked.

• False Positive (FP): The detector falsely identifies a non-watermarked stream as

watermarked.

• True Negative (TN): The detector correctly identifies a non-watermarked stream as

non-watermarked.

• False Negative (FN): The detector falsely identifies a watermarked stream as

non-watermarked.

The watermark presence is determined at the detector by the watermark statisticτ. This is

calculated as a ratio of successfully detected synchronization frames divided by the

number of total frames. Comparing this statistic to the detection thresholdγ determines

whether a watermark is present. Adjusting the threshold to ahigher value (i.e., closer to 1)

results in less FP values, but increases the number of FNs. Lowering the threshold (i.e.,
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closer to 0) generates more positively identified watermarkstreams, increasing the FPs

while lowering the FNs.

Another system service is the modified network stream. The modifications of the

inter-packet delays may indicate to an attacker that the stream is altered. Previous research

indicates that this watermarking technique is resilient tocryptanalysis and the distribution

of the watermark data is nearly identical to the original.

Significant system failures represent a critical reductionin the effectiveness of the

system in terms of the overall goal. A false negative detection represents an active

stepping stone that is not detected and therefore can pass freely in the network. While the

attacker may need additional measures to remove a watermark, the active removal of a

watermark by the attacker is also a critical system failure.

The sub-optimal performance measures demonstrate system failures in which the

system may not perform ideally, but the goal of detecting thestepping stones when present

is still maintained. False positive detection may require human intervention to filter the

false detections and can degrade overall performance if it is too severe. The detectable

watermark and network interference both provide the stepping stones with additional

information regarding detection tactics, but these do not represent critical failures of the

system to detect the stepping stones.

3.4 Workload

The stepping stone traffic has factors that are considered system workloads. The

packet size, throughput and inter-packet delay are important factors that significantly alter

the performance of the algorithm. The primary factors affecting the algorithm are the

inter-packet delay distribution and packet inter-arrivalrate. Because the detector is

fundamentally based on the positioning of packets, carefully chosen parameters are often

only effective against traffic that follows a certain workload. If the algorithm changes in
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any way, other factors may have greater influence. The primary factors in this system are

the stepping stone traffic throughput and inter-packet delays.

In this experiment, the workload factors are chosen by randomly selecting previously

recorded SSH traffic flows from the CAIDA dataset as system inputs. The packet timings

are watermarked and input to the detector. To analyze the FP detection, random unmarked

packet streams bypass the watermarker and are input directly into the detector. The

simulation and live experiments use a random selection fromthe CAIDA 2009 dataset.

3.5 Performance Metrics

In the SSD, the primary goal is to detect network stepping stones. Indeed, accurate

detection without significantly altering statistical distributions are the primary factors in

optimizing the algorithm. The primary metrics are significant to identifying the presence

of a watermark and correctly extracting each encoded bit. Secondary metrics not essential

to this system are addressed, but are not the main focus of theresearch. The primary

performance metrics to evaluate the SSD are:

• False Negative Detection Rate

• False Positive Detection Rate

• Correctly Extracted Watermark Bits

The FN rates are essential metrics in evaluating the accuracy of the detection system.

From an operator workload perspective, the FP rate is equally important to identify the

detections that are not true stepping stones. The bits detected per watermarked stream are

important to identify the accuracy of the system as well as the detection speed. Although

the threshold determines whether the entire stream is detected as watermarked, the

number of bits correctly detected per watermarked stream isalso important in correlating

the stepping stones.
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3.6 System Parameters

All of the parameters that affect the performance of the system can be characterized

as workload parameters and system parameters. These are shown in Table 3.1. Figure 3.7

also shows the SUT with the parameters, workloads and outputs. The system is most

sensitive to the watermark interval length directly correlating with the number of

timestamps in each stream. The frame size determines the amount of timestamps

necessary for the watermark and must be a multiple of the number of encoded bits. In this

experiment, the system encodes seven bits with one parity bit, so the frame size must be at

least 16 (i.e., (7+ 1)× 2). A frame size of 32 is also tested in the simulation. The bit

detection level determines the number of correct bits required to identify each

synchronization frame. Typically this value is either 0 or 1in the pilot studies, but

increasing the value allows for the detection in the presence of greater noise. The

minimum value of 0 decreases the likelihood of a false positive, but it may pass over

actual synchronization frames if there is a large amount of network noise. The frame size

is expected to affect the system, but not as much as the bit detection level. Thethreshold is

selected to minimize the FP and FN rates and the rest of the parameters have a low

sensitivity to the system.

Table 3.1: System and Workload Parameters

System Parameters Workload Parameters

Watermark Interval Length Previous SSH trace to be watermarked

Frame Size (s) Previous SSH trace not to be watermarked

Bit Detection Level (T)

Watermark Threshold (γ)
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Figure 3.7: System Inputs, Parameters and Outputs.

3.7 Factors

In concert with the primary motivation for this research, the system parameters

involving the watermarking and detection algorithm are themain factors to be studied.

The algorithm factors include the selection of the bit detection level, frame size, and

watermark threshold (γ). In addition, factors during the simulation include the simulated

noise (jitter) and the network path for the live experiment.

These factors shown in Table 3.2 are the subset of the system parameters evaluated in

the simulated experiment based on expected performance measures. The simulation

results confirm whether the levels should be maintained in the experimental design or if

they should be modified. A preliminary threshold for the liveexperiment is also

determined during the simulation. The simulation comparesthe watermark statistic to the

expected theoretical value in order to further validate theexpected results and ensure the

model is accurate. The simulated jitter levels are selectedto be similar to previous

research by Houmansadr. Other research shows that worst case jitter values range around

5 ms [14], so these chosen values represent values beyond previous research extremes.
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A comparative analysis used for validation is performed using both the extracted

SSH traces as well as 60 traces provided by Amir Houmansadr aspart of the SWIRL

research. The extracted dataset provides the fundamental values; the Houmansadr traces

are used to validate this research against previous watermark research.

Table 3.2: Factors for Simulated Experiment

Factors for Experiment Levels

Simulated Jitter 6.2-12 ms Standard Deviation

Detection Threshold 0, 1 bits

SSH Trace Data Watermarked Traces, Unmarked Traces

Table 3.3: Factors for Live Experiment

Factors for Experiment Levels

Network Path Tokyo, Ireland, California, Virginia

SSH Trace Data Watermarked Traces, Unmarked Traces

3.8 Evaluation Technique

The two evaluation phases of the SSD are simulation and a liveexperiment. The

simulation watermarks the timestamps of a random extractedCAIDA SSH trace. The

client generates packets at intervals based on these timestamps. The packets timings are

then modified using Gaussian noise and input to the detector.The watermarker and

detector are simulated in a statistical package called R. Theresults determine the

interaction between factors and also estimate the amount ofreplications to run in the live

experiment.
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The live experiment uses the same random sampling of traces,but the output of the

watermarker and detector are performed using hardware implementations. Because each

random sample is approximately two minutes in length, the number of replications in this

phase is less than the analytical phase. Each of the computers in the live experiment are

virtualized t1.micro Amazon EC2 instances. The configurations of the packet generator,

repeaters, and the receiver are listed in table 3.4. The packet generator and receiver code is

written in Python using the Twisted module version 11.0.0 and Scapy module version

2.1.0.

A graphical depiction of the live server locations is shown in Figure 3.8. The black

lines represent packets generated by the client and the red lines show the direction of the

stepping stone traffic. The California server generates all of the live traffic and sends it to

one of the repeaters or the final destination in Virginia. Therepeaters forward the traffic

on to the next server and ultimately all end in Virginia. The network path for the repeaters

is Tokyo to Ireland to Oregon to Virginia. Four separate processes on the client generate

independent data streams simultaneously during the experimental phase. The combination

of marked and unmarked traffic more accurately simulates noisy network environments.

Table 3.4: Live Experiment Hardware in Amazon Elastic Compute Cloud

System Location Zone AMI Linux Distribution

Client California us-west-1b ami-1bd68a53 Red Hat Linux (64-bit)

Repeater 1 Tokyo ap-northeast-1a ami-0644f007 Red Hat Linux (32-bit)

Repeater 2 Ireland eu-west-1c ami-953b06e1 Red Hat Linux (64-bit)

Repeater 3 Oregon us-west-2a ami-38fe7308 Red Hat Linux (32-bit)

Server Virginia us-east-1a ami-60ee1109 Ubuntu Linux (32-bit)
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Figure 3.8: Amazon Elastic Compute Cloud Locations

The validation strategy includes a cross-validation of thesimulation and live

experiments and a comparison against previous research. The live experiment results

should match closely those predicted from the simulated model. Comparisons using the

previous Houmansadr data to the SWIRL design also help validate the research against

another watermarking technique.

3.9 Experimental Design

The experiment requires a full-factorial of the parametersto quantify the interaction

as well as a substantial amount of replications to allow for the jitter levels. Based on

previous research, approximately 1,000 replications create a sufficient statistical basis for

analysis and the pilot studies determine the statistical significance of these results.
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Therefore, approximately 24,000 total iterations are needed to evaluate the system

performance and validate the system against previous research.

The live experiment requires a full factorial of the servers(i.e., Tokyo, Ireland,

Oregon and Virginia) and the marked and unmarked data. The extracted SSH traces are

selected at random for each sample. Based on the pilot studies, approximately 100

samples of 120 seconds in length are required to estimate theFP and FN values for each

server. The amount of repetitions is based on the variance ofthe data. Assuming four

independent sessions consisting of three watermarked and one unmarked session, the total

number of trials per repetition is 4× 4× 100= 1,600. A total of five repetitions results in

8,000 trials in the live experiment. Assuming each trial is approximately 120 seconds and

four processes run simultaneously, the live experiment takes about 67 hours.

The model confidence level is 95% to establish factors beforea hardware

implementation is considered. Before progressing to the live experiment, the simulation

should show that the watermarked and unmarked statistics are different at a 95%

confidence level or better. Because of the effort required to build and run the live network

model, a 95% confidence level ensures that the model can determine within the specified

statistical accuracy, that the performance is in fact superior. The variance in the live

experiment may be greater than expected, but the results should still show a difference

between the marked and unmarked streams at a 95% confidence level or better.

3.10 Methodology Summary

This research analyzes previous network traffic and introduces a novel watermarking

technique. The traffic characterization uses statistics to analyze previous captured network

traces from the CAIDA dataset to characterize traffic typical for a stepping stone. The

research analyzes inter-packet delays for the different streams and determines the

characteristics of the traffic to better optimize the detection parameters.
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The extracted timestamps are used as data inputs to test the algorithm using a

computer simulation in R. The results of the simulation establish the baseline for

validating the algorithm and the live experiment. Factors such as parity checking and

framing are evaluated in the algorithm to determine interactions and achieve a more

optimal performance in the live experiment. The simulationalso sets an initial baseline for

the threshold value used to determine if a watermark is present.

Finally, the traffic generated by a live computer is passed through various stepping

stones across the Amazon EC2 to determine true rates in live environments. This

substantiates the analysis in the simulated model. This technique is expected to detect the

presence of the watermark with predictable error rates using similar stream sizes (i.e.,

length of time) to the SWIRL design . The values extracted by thedetector are also

expected to match the watermark sent by the client.
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4 Analysis and Results

In this chapter, the traffic analysis of the CAIDA 2009 dataset is first presented. The

features are used to develop the algorithm of the watermarker and the detector. Next, the

simulation results demonstrate a statistical difference between the watermarked data and

the unmarked data. Based on results, a threshold is determined to detect the presence of

the watermark. Finally, the analysis of the live simulationdemonstrates that this technique

is a viable watermarking algorithm for certain types of interactive traffic.

4.1 Traffic Analysis

Analysis of timestamps reveal important characteristics.First, Figure 4.1 illustrates

the first level Haar wavelet decomposition vectorsd1, d2, andd3. Each of the vectors are

approximately normally distributed around zero. Second, the density plot of the

timestamps appear bimodal. The Haar observation is useful in applying the watermark

using the DWT because the watermark must retain the bimodal characteristic for

invisibility.

The Haar wavelet decomposition is performed using thewaveslimlibrary in R. The

first vector represents a scaled value for the difference of the pairs of time differentials.

For example, using the time differentialsn0,n1,n2, · · · ,nj the values of the first vectord1

is as shown in Equation 4.1.

d1
n =
−1
√

2
(ni − ni+1),n = 1,3, · · · ,n− 1 (4.1)

The plot of the first three vectors for the four level Haar decomposition using 32,768

unique timestamp differentials is shown in Figure 4.1. As shown in the figure, the values

for the first vector are approximately normally distributedaround zero. This discovery of

the vector distribution originally led to the realization of the watermark application using

the sign of the vectors. Performing an inverse DWT on the manipulatedd1 vector while
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retaining the remaining vector has an effect similar to interchanging the packets in the

time domain. This is graphically depicted in Figure 4.2.

Density plot of Haar DWT Vectors, 32768 Time Differentials
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Figure 4.1: Distribution of the first three detail vectors for the four-level Haar Discrete
Wavelet Transform using time differentials as inputs.

4.2 Algorithm Development

4.2.1 Frame Length. The discrete wavelet transform vectord1 contains exactly

half the number of values as the input vector. Thus, at most the watermark algorithm

encodes half of the number of bits selected for the frame sizeparameter. To use an 8-bit
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Figure 4.2: A graphical illustration of the watermark applied to a sequence of time packets.
A sign change in thed1 vector appears like two timestamps changed places in time.

watermark, the frame needs to be at least 2n wheren is an integer greater than three. The

transform relies on an accurate synchronization of the frame because the transform

generates the vector values based on the differential time pairs. If even one timestamp is

lost, all differential time pairs are modified from that point until the endof the frame. This

requires that the frame is tightly synchronized and that anylosses or errors are identified

and corrected quickly. The requirement leads to the generation of the synchronization

frame for each watermark. Although this data is redundant, it allows for identification and

in some cases correction of errors in the presence of networknoise and packet loss.
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4.2.2 Synchronization Frame.The algorithm is also dependent on the choice of

the synchronization frame. Because the watermarker and the detector need to use the same

value in the synchronization frame, the system is labeled assemi-blind. The discoveries

during the experimental runs show the characteristics of a synchronization frame that is

more robust than others. First, if the synchronization frame is 8 bits, then the two four bit

words should be different. The reason for incorrectly identifying the synchronization

frame in these cases is due to the random watermark. If the synchronization frame

contains bits ABCDABCD, the detector is more likely to incorrectly identify the

synchronization frame if the watermark contains the same word in the first or second

positions. In other words, if one word of the randomly chosenwatermark matches the

synchronization frame (i.e., ABCDEFGH or EFGHABCD), the detector incorrectly

identifies more synchronization frames than is predicted atrandom. In addition, the

synchronization frame should contain an equal number of 1 and 0 bits. This retains the

original distribution centered around zero of the Haar vector d1. The chosen

synchronization frame for the experiment is 1100 1010.

4.2.3 Frame Size.The DWT requirement of 2n values per frame requires the

encoding of 8 bits to have a frame size of 8× n wheren is an integer greater than 1. The

larger frame size encodes the synchronization or watermarkas rows of 8 inside the larger

frame vector. Increasing the frame from 16 to 32 values does not increase the detector

performance in terms of speed or accuracy. In fact, in some cases the 32 value frame

makes it less resilient to errors that occur near the beginning of the frame. Assuming that

the errors occur at random, the 32 value frame does not pose anadvantage over the 16

value frame. Pilot studies indicate that the 32 value frame does not offer a significant

performance improvement over the 16 value frame. In a physical implementation, it is

also more difficult to modify a larger frame size because of buffering. For these reasons,

the live experiment only uses a frame size of 16 to increase the resiliency to lost packets.
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4.2.4 Threshold. To detect the presence of the watermark using a semi-blind

detector, a calculation needs to be made to determine if a watermark is present. The

technique requires the synchronization frame to be sent prior to each watermark. The

presence of the synchronization frame preceding each watermark combined with the

distribution of the Haard1 vector allows the threshold to be a direct calculation of the

number of synchronization frames detected. Assuming that anon-watermarked streamd1

vector follows the distribution given in Figure 4.1, the likelihood that the detector will find

a synchronization frame at random is evaluated in Equation 4.2, whereT is the bit

detection level for an 8 bit synchronization value. The bit threshold is best described as

the number of accepted bit errors for the detector to correctly identify the synchronization

frame. Note that settingT = 0 means a synchronization frame is recorded only when all

eight bits are correctly detected as in,

P(T) =
T
∑

0

(
8

8− T
)(0.5)8−T(0.5)T . (4.2)

For T = 0, the chance of a synchronization frame exactly occurring is 0.0039. When

T = 1 for use in noisy environments, the probability increases from the zero bit value by a

factor of 10 to 0.03516. These analytical thresholds are confirmed using 60 unique time

differential arrays of over 3,000 data points. The number of times the previous

synchronization frame exactly occurs (T = 0) is 0.0038832 (i.e., 1563 occurrences in

402500 unique 16 value frames). SettingT = 1 also yields similar results with a

probability of 0.035098 (i.e., 14127 correct in 402,500 unique 16 value frames).

4.3 Watermark Application and Invisibility

A density plot in Figure 4.3 shows an unmarked sample, the same sample after

watermarking and the watermarked sample with noise added. In this case, the additive

noise is the maximum 12 ms and demonstrates a significant difference between the
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original and watermarked sample. It also shows how closely the watermarked sample

resembles the unmarked sample. This is due to the algorithm shifting the inter-packet

delays and its ability to preserve nearly all of the inter-arrival densities. The only time

differentials that change from the original are those in which the negative watermarker

output is changed to the absolute value. This occurs in less than 0.1% of the total number

of packets. The detector is still able to correctly extract the data encoded in the

watermarked stream with additive noise as shown in Figure 4.3.
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Figure 4.3: Density plot illustrating the unmarked, watermarked and watermarked sample
with simulated noise.
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4.4 Simulation

4.4.1 Pilot Studies. The pilot studies using the R simulation show that the frame

size of 16 is more optimal for the detector. By reducing the frame size to the smallest

value allowable while encoding 8 bits, the number of synchronization frames increases

and enables the detector to more accurately decode the watermarks.

4.4.2 Threshold determination.The ability to determine if a watermark is present

depends on a suitable choice for the thresholdγ. In this case,γ is not analytically

determined, but experimentally derived by the distribution of the watermarked and

unmarked data in the presence of noise. The output of the simulation determines that the

95% quantile is approximately the point at whichγ is equal for the unmarked and the

marked statistics. For the purposes of this experiment, the95% quantile for the unmarked

data statistic is 0.01042 and the 5% quantile for the watermarked data statistic is 0.01045.

The actual threshold lies between these two points, and for the purposes of this

experiment, the mean of the two values is used in whichγ = 0.01043. Note, future

research may be able to analytically derive this value basedon the rate of traffic as well as

the statistical properties of the DWT vectord1.

The watermark estimated probability densities are shown inFigure 4.4. The

threshold value ofγ = 0.01043 is also shown. Note that these densities are estimated

using a kernel smoothing function and scaled to appear on thesame graph. This causes the

threshold to appear at a higher value than when the two densities cross on the graph. Also,

the watermark statistic must be positive although this graph depicts otherwise because the

density is only estimated.

4.4.3 Performance of the system.The simulation randomly selects a CAIDA 2009

extracted dataset and randomly applies network jitter before applying the detection

algorithm. The system then tests for the presence of a watermark in these streams and
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Figure 4.4: Density plot illustrating the estimated probability distributions of the watermark
statistic. The threshold ofγ = 0.01043 is also shown.

unmarked streams. The results show that using the thresholdγ = 0.01043 at a 95%

confidence level, the FP rate is 4.6-5.1%, FN rate is 3.96-4.44%, and the error rate in

which the extracted watermark is incorrect is 7.86-8.30%.

4.4.4 Comparative Analysis.The simulation also validates the data rates

compared to the previous research. Using the 60 Houmansadr samples, the error rates are

drastically lower than using the 99 extracted CAIDA streams.In the simulation, the 60
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samples produce similar results using comparable amounts of network jitter. In the case of

the SWIRL test, live jitter values results with a standard deviation of 6.2-12 ms are

replicated in the simulation. For this research, instead ofusing previously recorded values,

the jitter is simulated as a Gaussian random variable with a mean of zero and standard

deviation of 6.2-12 ms. In the case of the DWT design, the errorrate in which the

extracted watermark is incorrect is 1.57-2.97 per 10,000 ata 95% confidence. The FN rate

using the Houmansadr samples is 7.8-8.4 errors per 1,000 samples, which is greater than

the SWIRL rate of 10−6. The FP rate of the simulation is closer to the SWIRL system with

a rate of 0-7 errors in 100,000 samples. The results of the simulation using Houmansadr’s

values demonstrate a response in concordance with previousresearch.

Using alternate data by synthesizing streams based on the tcplib distribution also

validates the performance of the algorithm. In this scenario, the simulation randomly

generates 120 second timestreams using the tcplib distribution and determines the

performance. Randomly selecting the 6.2-12 ms jitter, the watermark extraction error rate

for the tcplib distribution is 6.97-7.28% at a 95% confidencelevel. This matches very

closely with the simulated values from the CAIDA 2009 extracted dataset thus further

validating both the simulation results and the accuracy of the CAIDA 2009 extracted

timestamps.

4.5 Live Experiment Results

The results show that the watermarked data is more difficult to discern from

unmarked data as the traffic traverses more paths. This follows intuitive knowledge that as

the path gets increasingly noisy, the calculated statisticdraws closer to the thresholdγ and

becomes more like the unmarked data. Sending the data from California through Tokyo,

Ireland and Oregon before the server receives it in Virginiaadds additional network noise

such as jitter, thus generating more errors.
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4.5.1 Watermark Statistic Analysis.To determine whether a watermark is present,

the detector calculates the valueγ by analyzing the number of synchronization frames

present and dividing it by the total number of frames. In the case of a perfect network path

with no noise, the number of synchronization frames will be exactly half of the number of

total frames in the stream. For unmarked streams, the threshold will be closer to that

determined using Equation 4.2 depending on the bit threshold. For a bit threshold of zero,

the synchronization frame must exactly match and the unmarked statistic should be

approximately 0.003.

Figure 4.5 shows the density of the watermark statistics over the course of the

experiment. The unmarked streams to each target are groupedtogether and closely match

the expected results in which the synchronization frame is detected according to random

chance. The statistic mean for the watermarked streams increases as the target approaches

the final destination. The Tokyo server traverses the most connections and, as expected, is

less discernible from the unmarked streams. Likewise, sending traffic directly from the

California server to the endpoint (i.e., Watermark Virginiain Figure 4.5) generates

statistics with a higher mean than the other targets.

4.5.2 False Positives and False Negatives.The FP values occur when the detector

identifies the unmarked stream as containing a watermark. The results confirm the

expectation that the network path should not affect the error rates. Figure 4.6 shows the

density of the unmarked streams for each of the targets. The Wilcoxon test also confirms

that there is no statistical difference between the watermarked and unmarked streams.

The FN values behave much different than the FP. The FN values are dependent on

the network characteristics, while the results show that the FP values are not dependent on

the network path. The network noise alters the time delays ina manner that lowers the

statistic mean such that the detector fails to identify the presence of the watermark.

55



0.00 0.05 0.10 0.15

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Density plot of Watermark Values,
 Threshold=0

Server Chain California −> Tokyo −> Ireland −> Oregon −> Virginia
Watermark Statistic

D
en

si
ty

Unmarked Values
Watermark Virginia, n=1496
Watermark Oregon, n=1500
Watermark Ireland, n=1485
Watermark Tokyo, n=1500

Figure 4.5: Density plot of Watermark Statistics over all servers. Unmarked data from all
servers is grouped into unmarked values.

Excessive jitter, noise and delay are factors contributingto the FP rate. In the experiment,

the Tokyo server generates the greatest number of false negatives while the closest server

in Virginia generates very few. This is expected because theTokyo server traverses the

largest path from California through Tokyo, Ireland and Oregon before reaching the target

in Virginia.

4.5.3 Dataset Anomaly.In the case of the graphs depicted in this research, it is

important to identify and provide justification for an identified data anomaly. Figure 4.5

shows a small peak in the unmarked data at approximately 0.03. Figure 4.6 also shows

that this anomaly is present in datasets sent to all servers.Upon further investigation, these

data points originate from index number 99 of the extracted data. This dataset contains
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Figure 4.6: Density of Unmarked Live Experiments.

only 121 time differentials, resulting in a maximum of three synchronizationand data

frames to watermark. In this case, the unmarked data contains two frames of 16 that

contain the synchronization frame. This causes the detector to register the watermark

statistic unusually high for an unmarked dataset. It is important to also recognize that

although the unmarked data contains the synchronization frame, this does not result in a

lower detection rate when the same sample is watermarked. Inthis system, when the

synchronization frame is identified, the detector decodes the watermark in the next frame

and advances past the watermark frame to locate the next synchronization frame.

Advancing to the next frame prevents determining the presence of any additional

57
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Figure 4.7: Density of watermarked sessions during live experiment.

synchronization frames inside the current window. This causes a sample such as data

point 99 to appear to have a large unmarked value when the actual presence of a

synchronization frame across the entire sample is only 0.01867. This flaw in the

calculation of the statistic is also described in the futurework along with a

recommendation to correct for these unique cases.

4.5.4 Watermark Bit Errors. Another important aspect of the system occurs after

the detector threshold determines that a watermark is present. The extracted values should

match the code watermarked by the client in order to correlate that stream correctly. As
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expected, the Tokyo stream generated the greatest percentage of watermark bit errors and

the Virginia server contained the least. Figure 4.8 shows the histogram of the number of

bit errors in those incorrectly decoded watermarks. Based onthe results that most errors

were a single bit, some method of error correction in addition to the parity may enable the

detection and correction of these errors in future systems.
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Figure 4.8: Histogram of bit errors occurring during two trials. Only watermarked streams
with bit errors present are represented in this plot.

4.5.5 Wilcoxon Rank Sum Test.The Wilcoxon rank sum test is conducted using

the statistic between the watermarked and unmarked data sets to measure the statistical

difference. The Wilcoxon test is used because the distributionsof the watermark statistics

are unknown. The two analyses determine the statistical differences between the

unmarked and the watermarked data and between the unmarked streams to the different

servers. The p-value of the Wilcoxon rank sum test for the unmarked data against any of
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the marked sources is 2.2×10−16. Any p-value less than 0.001 indicates a sufficient

statistical dissimilarity demonstrating the difference between the unmarked data and the

watermarked data sent through any of the routes in this experiment.

Although there is a statistically significant difference between any of the

watermarked and unmarked datasets, the noise should not have a similar impact on the

unmarked data. When an unmarked stream is sent, the route and network noise should not

make the presence of a watermark any less or more detectable.A Wilcoxon rank sum test

performed on the four sets of unmarked data (i.e., Tokyo, Ireland, Oregon, and Virginia)

show that there is not a statistical difference between the unmarked data. Table 4.1

illustrates the p-values for each pair of tests.

Table 4.1: P-values for Wilcoxon Rank Sum test between unmarked datasets

Ireland Oregon Virginia

Tokyo 0.7818 0.7288 0.09962

Ireland X 0.4832 0.06921

Oregon X X 0.197

In addition to testing the difference between the unmarked and watermarked data, it

is also interesting to note that there is a significant difference between some of the

watermarked datasets. While the difference between sending the watermarked streams

through Tokyo and Ireland is not necessarily significant (p > 0.001), all of the other

datasets show a significant statistical difference based on the p-values (p < 0.001) in Table

4.2.

These results a statistical significance of the watermarkedstreams exists between

servers. Although the original research goal is not locating the origin of the stream, the
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Table 4.2: P-values for Wilcoxon Rank Sum test between watermarked datasets

Ireland Oregon Virginia

Tokyo 0.1148 4.129×10−9 2.2×10−16

Ireland X 1.395×10−6 2.2×10−16

Oregon X X 3.642×10−6

p-values indicate a statistical difference between routes that traversed continents and those

that did not.

4.5.6 Results of five trials.Four additional runs establish a statistical basis for the

individual experiments. In each trial, three watermarked and one unmarked stream are

simultaneously sent through the network paths described previously. Each run consists of

300 watermarked samples and 100 unmarked streams randomly chosen from the

previously used CAIDA 2009 dataset of 99 samples. Table 4.3 and Figure 4.9 show the

95% confidence interval for the watermark statistic, FP and FN rates in this experiment.

The results of the FP values demonstrate that there is not a statistical significance

between the target servers as shown in Figure 4.9(b). Although the interval for the

Virginia is smaller than the other targets, it still falls within the interval of Ireland and

Oregon confidence intervals. This smaller interval is most likely caused because this path

includes no stepping stones and contains the least network noise.

Different from the FP rates, some of the FN rates are statistically different from each

other. As seen in Figure 4.9(c), the Tokyo and Ireland servers along with the Oregon and

Virginia targets are not statistically significant from each other; however, these two sets

are significantly different in the live experiment from one another. As these two datasets

are located on different continents, this provides evidence that the FN rate isdetermined

by the watermark path.
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The accuracy rate in which the detector correctly extracts the watermark is observed

in five trials as well. Figure 4.9(a) demonstrates that extracted watermark accuracy is

dependent on the network path. Like the FN rate, as the numberof stepping stones

decreases and the network path is closer to the final target, the probability of an incorrect

watermark decreases. While there is not a statistical difference between the Tokyo and

Ireland servers, each of the other targets demonstrate a significantly lower error rate. The

additional network noise in the Tokyo and Ireland servers also increases the variance of

the watermark errors, generating a wider confidence interval.

Table 4.3: Five Trial data showing 95% Confidence Intervals for the extracted watermark
errors, False Positive rates and False Negative rates

Watermark Error Rates (%) False Positive (%) False Negative (%)

Simulation 7.9-8.3 4.6-5.1 3.95-4.44

Tokyo 16.6-26.0 4.22-9.77 5.16-10.04

Ireland 11.0-18.6 1.22-9.57 5.11-6.52

Oregon 6.8-8.8 0.07-7.67 2.91-4.02

Virginia 0.3-2.3 3.51-4.07 0.69-3.26

4.6 Validation

The final step of the analysis is to validate the results of theexperiment. The two

ways in which the data is validated is by comparing the simulated results to the live

experiments and comparing the results against other previous research.

4.6.1 Comparing the Simulated and Live Experiments.The data from the live

experiment closely matches the predicted data as shown in Figure 4.12. The unmarked
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Figure 4.9: Confidence Intervals for the False Positive, False Negative and Error Rates for
the five trials.

and the watermarked data follow closely the density for the live and simulated

experiments. The simulated data shown in black shows that the distribution of watermark

statistics are a close representative of the live experiment. Even the anomaly of dataset 99
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Figure 4.10: Box Plots of False Positive and False Negative rates expressed as a percentage
over five trials. Each trial represents 100 data points for unmarked streams and 300 samples
for watermarked streams.

referenced previously is shown both in the simulated and live datasets at a value of

approximately 0.03. The validation also shows that the simulated traffic is close to the

worst-case prediction of the Tokyo and Ireland servers. Thetraces that traversed paths

within the Continental US (i.e., California, Oregon, Virginia) have a mean value greater

than the predicted simulated values.

4.6.2 Detection Rates.The FP and FN rates shown in Table 4.3 also validate that

the detection rates of the live experiment are statistically similar to the simulation. The FP

detection rate confidence intervals all include the estimated 5% FP detection for the

CAIDA dataset. Again, this demonstrates that the unmarked data results are generally

independent of the target and number of stepping stones. TheFN rates and the watermark

extraction error rates vary more because they have greater dependence on the amount of

network noise. Both of these rates are within the range of the Oregon target, but the
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Figure 4.11: Box Plot of Watermark Error Rate of all watermarked data streams over five
trials, 300 samples each trial.

Ireland and Tokyo targets show a greater FN and error rate than the simulation. This can

be expected as those targets contained multiple stepping stones as well as greater

distances.

4.7 Analysis Summary

The initial simulation offered an analytical basis to set the threshold to determine if

the watermark is present. This value ofγ is set between the mean of the quantile which
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Figure 4.12: Density plot of Watermark Statistics over All Servers. Unmarked data from
all servers is grouped into unmarked values.

minimized the FP and FN rates at 0.01043. The live experimentruns of 300 watermarks

and 100 unmarked samples with a random watermark show very similar results to the

Tokyo and Ireland network paths. As the network path progresses closer to the

destination, the results show that the watermark is more discernible for the Oregon and

Virginia paths. The 95% confidence interval demonstrates a statistical difference between

the Tokyo and the Virginia network paths. The live experiments also show that the FP

rates are between 0 and 10%. This value may be lowered by changing γ at the expense of

less true watermarks detected. Currently, the FN rates are also between 0 and 10% but are

dependent on the network path.

While the detection rate is lower than other watermarking techniques, this novel

approach is valid, especially for human interactive network traffic in which the

inter-arrival of packets shows a high degree of randomness affecting thed1 vector. The
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next chapter applies aspects of this analysis to real world scenarios and offers future

research ideas to improve this novel technique.
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Figure 4.13: Density plot separating Watermarked and Unmarked Simulated and Live
Datasets.
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5 Conclusions

5.1 Research Impacts

As the threat of attackers increases, better methods of identifying and detecting

malicious actors becomes more important. Using network stepping stones, these malicious

users are able to better evade detection and penetrate deeper into networks. This research

introduces a novel technique to detect network stepping stones using DWTs to embed a

watermark on the network packet timing. The detector is bestsuited for interactive

sessions normally generated by a human entering keystrokes. Although TCP packets are

used in this research, because the technique presented is independent of the packet

payload, it can also be extended to other protocols (i.e., User Datagram Protocol (UDP)).

The simulation results demonstrate that the system accurately detects the presence of

a watermark at a 5% FP and FN rate for both the extracted timestamps as well as the

empiricaltcplib distribution. The simulated system also extracts the correct 8-bit

watermark with a greater than 90% accuracy. Using sample datasets from previous

watermark research, the extracted watermark accuracy increases to 99.98% accuracy.

The live experiment demonstrates repeatable results usingreal-world hosts as

stepping stones. Five trials are conducted in which three simultaneous watermarked

samples and one unmarked sample are sent 100 times at each different target. The results

show that at a 95% confidence level, the unmarked samples are statistically different from

each watermarked stream. This provides evidence that in a live environment the technique

can detect network stepping stones.

The capability of the algorithm to function across large distances shows that it is

resilient to one of the more popular use cases of the steppingstone. While previous

research demonstrates effectiveness using single stepping stones, this research achieved

the same capability using multiple stepping stones locatedin different continents. The
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statistical difference shown in the watermarked values between the servers allows for

further investigation as to the possibility that this technique can assist in geographically

locating a malicious host.

5.2 Attacker Defenses Against Algorithm

To find the stepping stones, the algorithm must be somewhat resilient against attacks.

If the attacker sees that a watermark is present, they may attempt to subvert or remove the

watermark altogether. Although this algorithm is subject to methods that reduce the

detection rate, the difficulty of detecting the presence of the watermark makes it less likely

the attacker will attempt them. Some of these attacks also assume that the attacker has

complete control over the stepping stones.

As shown previously, automated traffic does not perform well in this algorithm. If the

attacker cleverly devised a way to send the packets at a constant rate, the variance of the

d1 vector is not large enough and the changes by the noise overshadows the changes made

to the sign. Other constant bit rate traffic (i.e., VoIP) is equally difficult to detect when

tunneled through the SSH port .

Packet retransmission and packetization may reduce effectiveness with this

algorithm. As stated previously, if one timestamp is lost inthe frame, all values from that

point to the end of the frame will most likely be decoded incorrectly. The redundancy of

synchronization frames and smaller frame size (i.e., 16 values) provides some protection

against this attack, but are not entirely resistant. In addition, if the stepping stones remove

or add chaff packets, this also causes errors due to the missing timestamp. If the error

occurs only during the watermark, all values proceeding theerror will be decoded

incorrectly. If the error is during the synchronization frame, the results vary depending on

the bit threshold.
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Inducing random delay at any point after the watermark is applied also is a successful

attack on this system. Most of the utilities that retransmitpackets only apply constant

delay, thus as of this writing this attack needs custom written software to be successful.

Packetization also causes problems and is evident in some systems as shown during

the client development. If any system re-packetizes the packets after the watermark is

applied, this affects the inter-packet delay in the same way as if a packet is dropped.

Because the TCP connection is an atomic process requiring acknowledgements and

sequence numbers, most retransmission systems forward packets at the network layer. If

the retransmission program is written as a socket, this may become a greater problem as a

socket is more likely to combine smaller packets into a larger packet depending on the

network speed and operating system.

5.3 Future Work

5.3.1 SSH Traces.Although the CAIDA dataset provides a wealth of data, the

lack of payload presents the problem of determining whetherthe traffic is true SSH traffic.

Crude statistical analysis determines that some of these traces are most likely not human

interaction. Indeed, an ideal dataset is actual traces froman SSH server. A honeypot or

captured traffic from an exercise may be beneficial to record timestamps usedfrom human

interactive sessions.

5.3.2 Algorithm Improvements.This algorithm relies on single bit parity to detect

a bad watermark after finding the synchronization frame. Error detection and correction

techniques such as Forward Error Correction (FEC) may enhancethis algorithm to correct

identified errors. The analysis shows that single bit errorsare the most common. A single

bit correction may drastically improve results, especially in noisy environments.

Another improvement relates to the watermark statistic calculation. If a

synchronization frame is correct, this algorithm does not calculate the existence of the
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synchronization in the next two frames. In order to provide amore statistically correct

calculation of the watermark presence, the algorithm should iteratively calculate the

number of synchronization frames across the entire stream.This increases the number of

calculations performed and most likely results in performance loss; however, it reduces

the likelihood of the circumstance around data point 99 referenced in Section 4.5.3 from

occurring.

5.3.3 Stepping Stone Geo-location.As shown in the analysis, the experiments

demonstrate a statistical difference in the watermark statistic between the different servers.

The additional goal of geo-locating the source may be assisted by the use of a watermark.

In this case, the detector may be used to determine not only ifa watermark is present, but

estimating the traversed path. Future work using watermarks may assist the geo-location

of the client origin using only the synchronization frames.

5.3.4 In-Line Usage. The most difficult task of using the detector against stepping

stones is the ability to perform the watermarking on live data as it occurs. This may be

conducted either at the kernel level on the host device or by developing an in-line

watermarker that marks the packets as they traverse a network connection. In either case,

the system currently needs to buffer at least 16 packets before it can apply the algorithm

and send the packets. It may be entirely possible in the future to only buffer between two

to four packets and use this information on the following packets, but there always exists a

small number of packets to create the necessary inter-packet delays according to thed1

vector. Future analysis may reduce the amount of packets needed in the buffer, although

this delay may be one of the easiest ways for the attacker to identify the presence of a

watermarking device.
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5.4 Concluding Remarks

This research demonstrates a novel semi-blind active watermarking method of

detecting stepping stones. The algorithm encodes the watermark on the first level detail

vectord1 DWT of the inter-packet delays. While other systems may perform better in

terms of FP and FN rates, the invisibility and scalability this technique offers presents a

unique advantage over similar active watermarking techniques.
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Appendix A: Client and Server Development

The development of the client and server reveal many challenges regarding the

design of a live watermarker. The issues documented here provide a basis for others

developing similar or future systems that require similar functions. While some of these

problems are platform dependent, many of the lessons illustrated here serve as a starting

point to a full scale live watermarker.

A.1 Client Development

The client development changed courses based on a few observations during the

experiment. The problems included socket streams issues, transmission delays and low

level TCP programming development. The final client resolvedthese issues in a way

suitable for experimentation and analysis, but not for a finished product. To design a

product that is capable of manipulating the packet timings needs more effort and

expansion. This client only served to communicate with the designed server and send TCP

packets at precise time intervals.

Initially, the client used Python Socket library to generate the packets at specified

time intervals. The Python socket library is robust at handling TCP sockets and provides a

very simple means to send the packets from a source to destination. However, with the

simplicity came problems as well. Because the socket is a stream oriented protocol, the

simple client packetized the data intended for separate TCP packets. Using the server to

record the timestamps did not reveal the problem because theserver differentiates between

the packets by a sequence sent at the end of each packet. While the server showed the

timestamps correctly, the wireshark analysis critical to the experiment showed that the

client packetization reduced the total number of packets byas much as 20%. Because the

client repacketized small packets sent at high rates, if thepacket data was larger, it may

not be able to repacketize the data and force the client to send the packet individually.

74



Using packet sizes of approximately 1050-1100 bytes of TCP payload successfully forced

the client to send each packet individually and prevented initial repacketization. This

introduced the problem of transmission delay. Because each packet is now larger, it takes

more time to actually transmit the message on the physical medium. Depending on the

host network speed, the observed transmission delay rangedfrom 100 to 200 msec.

Because of this delay, the only way to reproduce the necessarypacket timings was to add

this transmission delay to the original delay for each packet. This technique may be later

used in a store-and-forward type of implementation but was not the original intent for the

experiment.

The final client uses the Python Scapy module to generate and transmit packets at the

link layer. The previous program correctly reads the delay times and sends the packets,

but the scapy module allows for fine control over the intervalbetween individual packets.

Using scapy, the client first generates a three way handshakenecessary for TCP and

continues to send data at specified time intervals directly to the network interface.

Because this experiment is not concerned with the receipt of the server echo replies, this

was removed from the server. This simplified the client because the TCP sequence

numbers only needed to be controlled from the sender. Using this new implementation,

the client now sends the data at prescribed intervals and does not exhibit the packetization

problems described earlier. The sender needs to have an additional command to prevent

the kernel from closing the TCP connection. Because the kernelis not actually initiating

the connection, when the low level packets are sent out, the server sends an

acknowledgement of each packet. When the kernel sees the acknowledgement, it will

send a reset to close the connection because the kernel did not initiate it. The following

command prevents a TCP reset command from leaving the client,although the kernel still

attempts to send the packet:

sudo iptables -A OUTPUT -p tcp --tcp-flags RST, RST
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--destination-port 5000 -j DROP

Using scapy to send the packets, the wireshark analysis shows that the client is

sending each individual packet correctly and the server is also receiving each individual

TCP packet separately.

A.2 Server Development

The server responsible for collecting the timestamps needsto have the capability to

service multiple connections in a timely manner. The serverdoes not necessarily need to

reply to the client, but does need to acknowledge the packetsas they arrive and create new

sockets to discern the different connections. The Twisted Python module creates an easy

manner in which this can be done in a multi-threaded fashion to optimize performance.

Each connection generates a new thread handled by the server. Because the intermediate

clients change the original TCP socket from the client, thereis a need for the server to

parse the data from the client to determine whether a watermark is sent in the experiment.

In this experiment, the Twisted server searches the TCP payload and records the

connection and watermark to a file for later use. For unmarkeddata, the client sends 9999

9999 as the watermark denoting that there is none present.

Although the original client records the timestamps as partof the Python program,

this feature does not accurately measure the timestamps as they arrive to the server.

Instead, tcpdump is run in a separate process in order to capture the traffic as it flows to

the server. This creates the scenario in which the detector may be placed external to the

server and the dumped traffic may be analyzed using an external resource.

A.3 Intermediate Clients

The intermediate clients need to pass the data from one server to the next in order to

facilitate the daisy-chain operation of the stepping stones. Initially, the netcat program
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seemed to be an acceptable solution as a simple network relay. Observing the packet

timestamps from the server showed that the packets were arriving at the expected times,

but the wireshark timing showed otherwise. The main problemas seen previously is the

treatment of TCP packets versus sockets. In some cases, netcat would packetize the

smaller packets based on the TCP stream in to a larger packet which results in the loss of

the timestamp at the network packet layer.

The next solution focused on socat. This is a powerful tool capable of relaying

packets at many layers, including UNIX sockets. The following command relays the TCP

packets and did not show any packetization problems evidentwhen using netcat:

sudo nohup socat TCP-LISTEN:5000,nodelay,fork

TCP:next_relay_server:5000,nodelay

The only issue that socat showed is the duplication of the TCP source port. Socat

appears to use port 33800 as the initial source port in the TCP transmissions. Because of

this, each time the intermediate server immediately preceding the destination restarted, the

TCP source port restarted to 33800. This introduces problemsin the analyzer because the

timestamps are based on the streams that are identified basedof the tuple of source IP,

source port, destination IP and destination port. Section A.2 also mentions that this

problem is overcome by embedding the watermark informationin the TCP payload.

77



Appendix B: Removed Samples

B.1 Non-Random Samples

The decision to remove samples is purely a subjective one based on the fact that there

is no information regarding the data payload to determine whether the traffic is true SSH

traffic. Other ports may conceal traffic on port 22, as well as SCP regularly copies files on

this port. This anomalous traffic removal is a manual process.

Most of the samples are removed based on two factors. First, many of the samples do

not appear random and appear more like traffic generators that have constant time

differentials. Examples of this traffic may include VoIP traffic, periodic maintenance and

probing traffic such as Simple Network Monitoring Protocol (SNMP). The figures below

represent the 180 streams removed for these reasons.
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Figure B.1: Plot of Erroneous Port 22 Times removed from experiment
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Figure B.2: Plot of Erroneous Port 22 Times removed from experiment
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Figure B.3: Plot of Erroneous Port 22 Times removed from experiment
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Figure B.4: Plot of Erroneous Port 22 Times removed from experiment
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Figure B.5: Plot of Erroneous Port 22 Times removed from experiment
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Figure B.6: Plot of Erroneous Port 22 Times removed from experiment
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Figure B.7: Plot of Erroneous Port 22 Times removed from experiment
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Figure B.8: Plot of Erroneous Port 22 Times removed from experiment
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Figure B.9: Plot of Erroneous Port 22 Times removed from experiment
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Figure B.10: Plot of Erroneous Port 22 Times removed from experiment
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Figure B.11: Plot of Erroneous Port 22 Times removed from experiment
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Figure B.12: Plot of Erroneous Port 22 Times removed from experiment

90



0 20 40 60 80 100 120

0
.0

1
.0

2
.0

3
.0

Plot Index 172

Index

D
e

la
y
 (

s
)

0 100 200 300 400 500

0
.0

1
.0

2
.0

3
.0

Plot Index 173

Index

D
e

la
y
 (

s
)

0 50 100 150 200 250

0
.0

1
.0

2
.0

3
.0

Plot Index 174

Index

D
e

la
y
 (

s
)

0 50 100 150 200

0
.0

1
.0

2
.0

3
.0

Plot Index 176

Index

D
e

la
y
 (

s
)

0 200 400 600 800 1000

0
.0

1
.0

2
.0

3
.0

Plot Index 177

Index

D
e

la
y
 (

s
)

0 200 400 600 800 1000
0

.0
1

.0
2

.0
3

.0

Plot Index 178

Index

D
e

la
y
 (

s
)

0 20 40 60 80 100 120 140

0
.0

1
.0

2
.0

3
.0

Plot Index 180

Index

D
e

la
y
 (

s
)

0 20 40 60 80 100 120 140

0
.0

1
.0

2
.0

3
.0

Plot Index 181

Index

D
e

la
y
 (

s
)

0 50 100 150

0
.0

1
.0

2
.0

3
.0

Plot Index 186

Index

D
e

la
y
 (

s
)

Figure B.13: Plot of Erroneous Port 22 Times removed from experiment
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Figure B.15: Plot of Erroneous Port 22 Times removed from experiment
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Figure B.16: Plot of Erroneous Port 22 Times removed from experiment
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Figure B.17: Plot of Erroneous Port 22 Times removed from experiment
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Figure B.18: Plot of Erroneous Port 22 Times removed from experiment
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Figure B.19: Plot of Erroneous Port 22 Times removed from experiment
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Figure B.20: Plot of Erroneous Port 22 Times removed from experiment
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